

Cationic polar pesticides in food and beverage matrices by IC-MS/MS

John Madden, Ph.D. May 31, 2021

Background

- Ionic polar pesticides include some of the most frequently used pesticides worldwide
- Highly ionic polar pesticides present unique challenges to traditional methods of pesticide analysis
 - Traditional extraction methods typically suffer from low extraction efficiency of highly ionic polar pesticides
 - RPLC methods have very poor retention of highly ionic polar pesticides
- Advances in the analysis of these target analytes has led to an increase in testing and regulation
 - Driven primarily by anionic polar pesticides such as glyphosate and gluphosinate
- The current IC-MS/MS method requires the use of a HRAM instrument due to poor chromatographic resolution of the paraquat – diquat pair
 - Thus, developments in the analysis of quaternary ammonium polar pesticides (quats) has lagged
- This work will review the development of a new method for the analysis of quats in food and beverage matrices
 - Improved chromatographic resolution of PQ-DQ pair negates the need for HRAM

The four target compounds (Quats)

Extraction techniques

- The most common multiresidue method, QuEChERS, suffers from low extraction efficiency of Quats
 - Developed primarily for extraction of non-polar pesticides
 - Not applicable to this work
- For highly ionic polar pesticides the Quick Polar Pesticides Extraction (QuPPE) method is used
 - Developed by the European Reference Laboratory for Single Residue Methods (EURL-SRM)
 - · Based on extraction with methanol/water, followed by centrifugation and filtering
 - No liquid/liquid partitioning or solid phase extraction
 - Extracts contain high levels of co-extractives, such as anions and cations
- In order to evaluate the performance of this new analytical method, the QuPPE extraction technique was applied to two different food samples, carrots and wheat flour, as well as tea extracts
 - The extracts were analyzed, and a synthetic mixture developed to simulate these extracts
 - · Quats were spiked into the simulated as well as actual QuPPE extracts as well as a green tea extract
 - Qualitative performance was assessed based on recovery from the spiked synthetic mixture and extracts

Sample preparation

- Carrot Baby Food and Wheat Flour QuPPE extracts
 - 10 g of sample is mixed with 10 g of deionized water in a 50 mL vial and agitated for 5 mins
 - For cereals 5 g of sample is mixed with 15 mL of deionized water
 - 30 mL of cold methanol was added, and the mixture agitated another 1 min
 - The mixture was centrifuged at 4,000 rpm for 5 mins
 - The supernatant was filtered and diluted 1 in 10
- Green Tea
 - A green tea infusion was prepared by boiling 10.0 g of tea leaves in 100 mL of water for 30 s
 - The mixture was allowed to cool before filtering and diluting 1 in 10
- Simulated Matrix
 - Simulated samples were prepared by diluting a Six-Cation Std in deionized water to obtain the total ionic strength (TIS) desired
 - A TIS of 250 ppm was used to simulate the strongest matrix measured from the QuPPE extracts

Instrumentation

- Thermo Scientific[™] Dionex[™] ICS-6000 IC System
 - Thermo Scientific[™] Dionex[™] IonPac[™] CG21-Fast-4µm (2 × 30 mm) guard and CS21-Fast-4µm (2 × 150 mm) separator
- Thermo Scientific[™] Dionex[™] AXP Pump
- Thermo Scientific[™] TSQ Altis[™] Triple Quadrupole Mass Spectrometer
 - Equipped with a heated electrospray ionization (H-ESI) source
- Thermo Scientific[™] Chromeleon[™] Chromatography Data System (CDS) Software

Instrumentation

- Thermo Scientific[™] Dionex[™] ICS-6000 IC System
 - Thermo Scientific[™] Dionex[™] IonPac[™] CG21-Fast-4µm (2 × 30 mm) guard and CS21-Fast-4µm (2 × 150 mm) separator
- Thermo Scientific[™] Dionex[™] AXP Pump
- Thermo Scientific[™] TSQ Altis[™] Triple Quadrupole Mass Spectrometer
 - Equipped with a heated electrospray ionization (H-ESI) source
- Thermo Scientific[™] Chromeleon[™] Chromatography Data System (CDS) Software

Instrument conditions

Ion Chromatograph Conditions

Mobile Phase:	Methanesulfonic Acid			
Eluent Source:	Thermo Scientific [™] Dionex [™] EGC 500 MSA Cartridge with Thermo Scientific [™] Dionex [™] CR- CTC III Trap Column			
Gradient:	$\begin{array}{ll} t = -4.0 - 0.0 \mbox{ min } & 3.0 \mbox{ mM} \\ t = 0.0 - 3.6 \mbox{ min } & 3.0 - 6.0 \mbox{ mM} \\ t = 3.6 - 6.0 \mbox{ min } & 6.0 - 22.0 \mbox{ mM} \\ t = 6.0 - 15 \mbox{ min } & 22.0 - 25.0 \mbox{ mM} \end{array}$			
Analytical Column:	Dionex IonPac CS21-Fast-4µm Separator with Dionex IonPac CG21-Fast-4µm Guard			
Suppressor:	Thermo Scientific [™] Dionex [™] CDRS 600 Suppressor (2 mm), 22 mA			
External Flow Pump:	0.3 mL/min			
Eluent Flow Rate:	0.3 mL/min			
Injection Volume:	10 µL			
Column Temperature:	40 °C			

Triple Quadrupole Mass Spectrometer Conditions

Ionization Mode:	Heated Electrospray (H-ESI)
Scan Type:	Selected Reaction Monitoring (SRM)
Polarity:	Positive
Spray Voltage:	2,800 V
Sheath Gas:	45 Arb
Auxiliary Gas:	2.5 Arb
Sweep Gas:	2.0 Arb
Ion Transfer Tube Temp:	350 °C
Vaporizer Temp:	300 °C
Cycle Time:	0.8 sec
Q1 Resolution (FWHM):	0.7
Q3 Resolution (FWHM):	1.2
Cycle Time: Q1 Resolution (FWHM): Q3 Resolution (FWHM):	0.8 sec 0.7 1.2

Selected Reaction Monitoring (SRM) transitions

Compound	Transition Type	Parent Ion (m/z)	Product Ion (m/z)
Chlormoquat	Quantifier	122.1	57.9
Chlormequat	Qualifier	122.1	62.9
Chlormequat-d4	Quantifier	126.0	57.9
Moniquat	Quantifier	114.1	98.1
Mepiquat	Qualifier	114.1	58.0
Mepiquat-d16	Quantifier	130.0	110.0
Poroquot	Quantifier	93.0	171.0
Faraquat	Qualifier	93.0	85.0
Paraquat-d8	Quantifier	97.0	179.0
Disust	Quantifier	92.0	84.5
Diquat	Qualifier	92.0	157.1
Diquat-d8	Quantifier	96.0	88.5

IC separation of the components in the simulated matrix

Thermo Fisher

IC-MS separation of the Quats in the simulated matrix

3.5e6 -Peak Concentration 1 Chlormequat 10 µg/L 2 3 Mepiquat 2 10 µg/L Paraquat 3 10 µg/L Diquat 10 µg/L 4 Matrix² 4 1 Matrix¹ Analytes Analytes -3.5e5-10.0 15.0 5.0 0.0

john.e.madden@thermofisher.com | 9-August-2021

Thermo Fisher

Matrix Effects

- Matrix-effect signal suppression in the HESI probe must be considered
 - Significant suppression was noted in the high ionic strength matrices upon the divalent species
- Isotopically-labeled internal standard addition was used to compensate
 - Isotopically labeled CQ, MQ, DQ and PQ are all readily available
- Isotopically-labeled Quats were spiked into the sample at the same concentration as the naturally occurring Quats

Compound Area Response (count.min @ 10 µg/L)		Ratio	
Chlormequat	373,966	0.7064	
Chlormequat-d4	469,565	0.7964	
Mepiquat	833,089	0.9412	
Mepiquat-d16	990,237	0.0413	
Paraquat	492,443	0.0220	
Paraquat-d8	527,811	0.9330	
Diquat	379,658	1 0408	
Diquat-d8	361,662	1.0490	

john.e.madden@thermofisher.com | 9-August-2021

ThermoFisher

Thermo Fisher SCIENTIFIC

Detector response curves

Detector response curves of CQ (solid lines) and MQ (dashed lines) obtained in two different matrices (deionized water and simulated matrix with Total lonic Strength = 250 mg/L)

Detector response curves of PQ (solid lines) and DQ (dashed lines) obtained in two different matrices (deionized water and simulated matrix with Total lonic Strength = 250 mg/L)

Normalized response curves

Normalized response curves of PQ (solid lines) and DQ (dashed lines) obtained in two different matrices (deionized water and simulated matrix with Total lonic Strength = 250 mg/L)

Confirmation

- Confirmation was based on the presence of the transition ions
 - Quantifier (most abundant) and qualifier (second most abundant)
- The measured peak area ratios of qualifier/quantifier were assessed
 - All ratios were within a range of 3%

	Ion Ratio (qualifier / quantifier)					
Compound	d.i. Water		Synthetic Matrix (TIS = 250 mg/L)			
	1.0 µg/L	10 µg/L	100 µg/L	1.0 µg/L	10 µg/L	100 µg/L
Chlormequat	21.2%	21.8%	22.3%	21.4%	21.4%	21.8%
Mepiquat	33.0%	34.3%	34.1%	33.5%	34.3%	34.1%
Paraquat	17.6%	18.0%	17.5%	17.7%	17.1%	17.2%
Diquat	32.3%	31.9%	33.2%	32.4%	31.8%	33.3%

Detection limits

Thermo Fisher

Compound	RSD (Non-Corrected Response) @ 1 μg/L		Compound	RSD (Corrected Response) @ 1 μg/L		
	Sinpound	Reagent Water	Simulated Matrix (TIS = 250 mg/L)	Compound	Reagent Water	Simulated Matrix (TIS = 250 mg/L)
Cł	nlormequat	6.77%	5.44%	Chlormequat	0.36%	0.46%
Me	epiquat	5.93%	4.00%	Mepiquat	0.46%	1.12%
Pa	araquat	6.73%	40.56%	Paraquat	1.36%	2.74%
Di	quat	6.28%	35.29%	Diquat	1.79%	2.84%

	Detection Limits (µg/L)				
Compound	Reagent	Water	Simulated Matrix (TIS = 250 mg/L)		
	LOD	LOQ	LOD	LOQ	
Chlormequat	0.01	0.03	0.01	0.04	
Mepiquat	0.02	0.04	0.04	0.11	
Paraquat	0.05	0.14	0.10	0.31	
Diquat	0.06	0.18	0.10	0.31	

Recoveries

Compound	Corrected apparent recoveries in deionized water (%)			
	1.0 µg/L	10 µg/L	100 µg/L	
Chlormequat	96%	100%	100%	
Mepiquat	97%	101%	101%	
Paraquat	99%	100%	99%	
Diquat	99%	101%	100%	

Compound	Corrected apparent recoveries in green tea (1/10) (%)			
	1.0 µg/L	10 µg/L	100 µg/L	
Chlormequat	94%	97%	98%	
Mepiquat	100%	99%	100%	
Paraquat	102%	99%	98%	
Diquat	98%	98%	98%	

Compound	Corrected apparent recoveries in simulated matrix (250 mg/L) (%)		
	1.0 µg/L	10 µg/L	100 µg/L
Chlormequat	95%	99%	100%
Mepiquat	98%	99%	101%
Paraquat	103%	101%	99%
Diquat	103%	100%	100%

Compound	Corrected apparent recoveries in QuPPE extracted Carrot Baby Food (1/10) (%)			
	1.0 µg/L	10 µg/L	100 µg/L	
Chlormequat	96%	97%	97%	
Mepiquat	103%	97%	97%	
Paraquat	102%	99%	97%	
Diquat	102%	100%	98%	

Conclusion

- The SRM mode used to detect ions of interest was effective for qualitative and quantitative determinations in selected food and beverage samples
- The Dionex IonPac CS21-Fast-4µm column was effective at separating the four quaternary amine cationic polar pesticides from the matrix and each other
 - This made it possible to identify and quantitate all four target compounds using nominal mass selectivity
- The IC method demonstrated high accuracy (80–120% instrument precision values) for all samples
- Sample preparation was simplified by using the already established simplified QuPPe method
 - Re-evaluation with the acidified method recommended for paraquat and diquat is recommended
- This method can be recommended as a reliable and cost-effective addition to any routine lab dealing with the determination of the target cationic pesticides in a wide range of samples